Quarkonium TG Progress

BNL, June 13 2017

Marzia Rosati and Tony Frawley

Upsilon Analysis

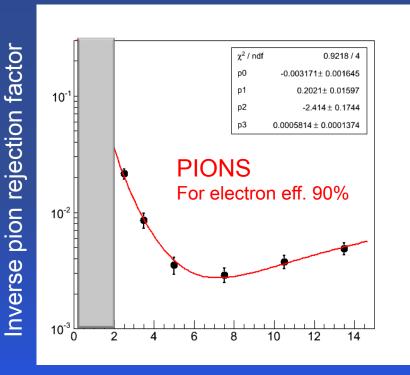
- ❖ The observable we plan to measure Y(1S), Y(2S), Y(3S) R_{AA} as a function of collision centrality and Y p_T.
- ❖Signal statistical precision that translates directly into Y(1S), Y(2S), Y(3S) R_{AA} and depends on
 - ✓PID efficiency (in depth studies done last Fall and currently in progress to account for non-uniformity response of the calorimeter)
 - ✓ Combinatorial and Correlated Backgrounds (new and finalised)
 - ✓ Tracking efficiency and momentum resolution (well understood by tracking group)

Basic Assumptions

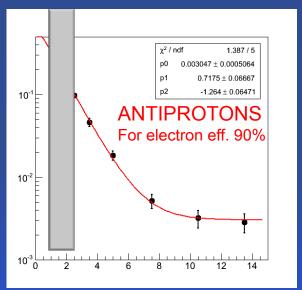
These assumptions are used in the following slides but will need to be revised to be consistent with the new 5-year run plan

Species	$\int Ldt(Z <10cm)$	Events	$\langle N_{coll} \rangle$	eID eff.	Y(1S)	Y(2S)	Y(3S)
$p\!+\!p$	$175~pb^{-1}$	7350 B	1		8770	2205	1155
Au+Au (MB)		100 B	240.4		16240	4080	2140
Au+Au (0–10%)		10 B	962		5625	1415	740

Background Issues


 Framework for inclusive background estimate existed and was modified to produce background plots as a function of "electron" pair pT. Progress reported regularly by Sasha Lebedev at simulations meetings, link to in progress note posted at

https://wiki.bnl.gov/sPHENIX/index.php/Upsilon Topical Group


Determine with realistic clustering and detector configuration in central Au-Au collisions as a function of eta and pt

- electron PID efficiency (fixed to 70% and 90%)
- hadron rejection factors
- done ✓ Determine correlated background (bottom, charm semileptonic decays and DY) -

- In the past we assumed a fixed hadron rejection factor of 90
- Last Fall new hadron rejection factors were calculated embedding of single particles in central (0-4.4fm) Hijing events and running full reconstruction chain were determined last Fall. For 70% eID efficiency rejection is ~2.5 times better.
- Currently S. Lebedev is repeating this with most recent calorimeter response.

Transverse momentum [GeV/c]

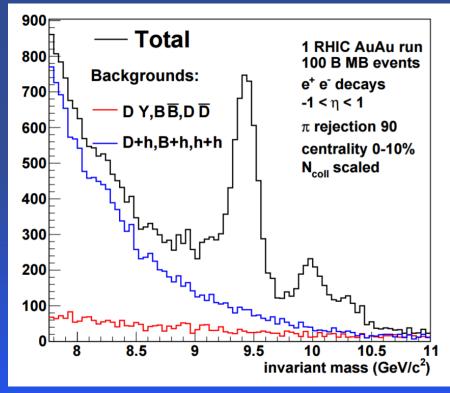
Transverse momentum [GeV/c]

proton and kaon rejections are better than that for pions

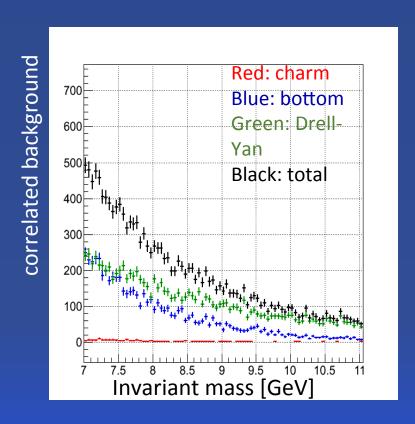
Combinatorial Background

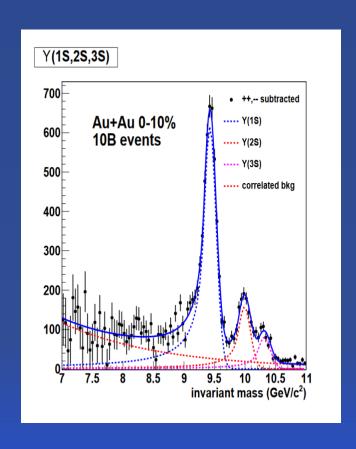
- We calculate background for 10B 0-10% central Au+Au events.We use p_T>2GeV/c cut, which does not affect Upsilons.
- ❖ Take fits to hadron spectra in p+p, scale by N_{COLL} and R_{AA}, downscale by hadron rejection.
- This gives us dN/dp_T per events for "fake electrons" in central Au+Au collisions.
- ❖For each event, generate number of fake electrons (smeared Poisson), for each fake electron generate kinematics (p_T, etc.). Calculate invariant mass.
- Do the same for fake electron / heavy flavor combinations.

Combinatorial Background

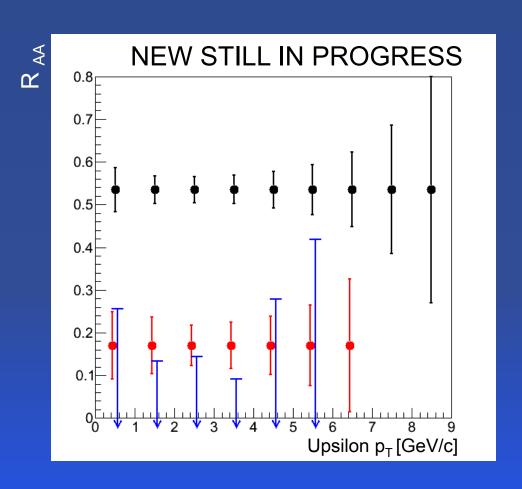

Combinatorial backgrounds comparable to the one in proposal despite larger rejection at high pT due to:

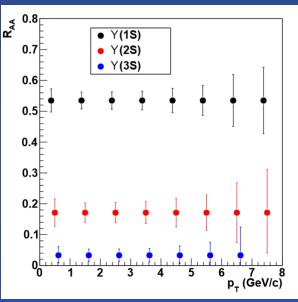
1) anti-protons 2) 90% eID vs. 70 % eID, 3) bad rejection at low pT


NEW

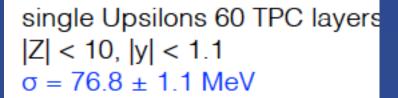


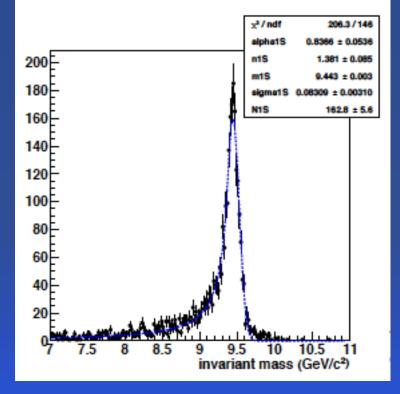
sPHENIX proposal

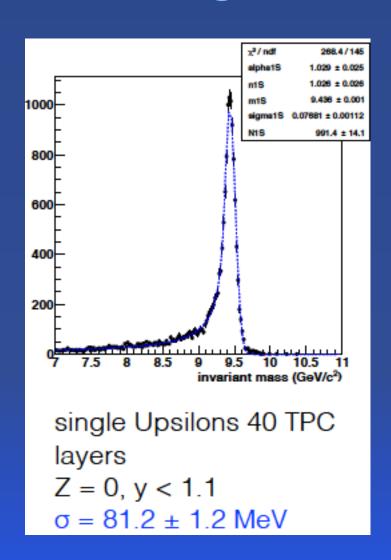

Correlated background (eID=90%)*

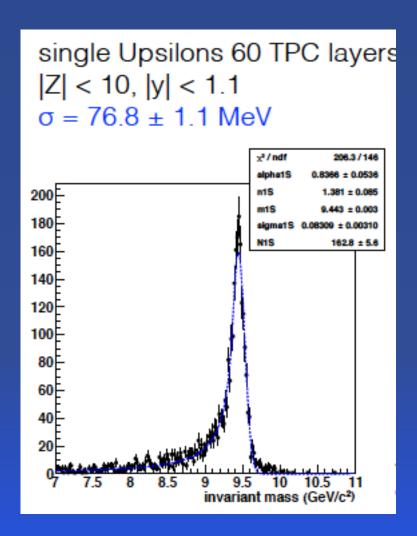


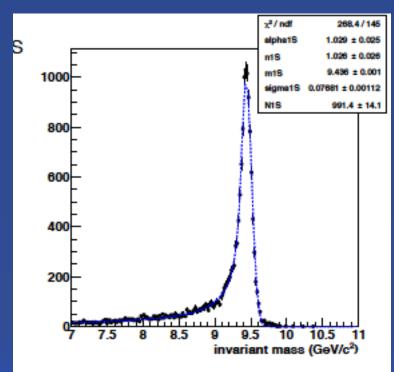
The new plot uses 90% eID efficiency and 50 MeV bins. New correlated background is approximately 1.5-2 times larger in 9-10 GeV range.


eID efficiency 70% realistic suppression




sPHENIX proposal


Invariant Mass vs TPC design



Invariant Mass vs Occupancy

Upsilons embedded in central Hijing events 60 TPC layers

$$Z = 0$$
, $y < 1.1$

$$\sigma = 83 \pm 3 \text{ MeV}$$

Plans

- Complete the Upsilon signal vs P_T
- Redo PID studies and background simulations
- Produce RAA plots with number of events consistent with 5 year run plan

Acknowledgments

- Plots provided by:
 - Sasha Lebedev
 - Tony Frawley& contributions from tracking group/software core group

NEED MORE VOLUNTEERS to make physics performance plots!